Arabic Handwritten Characters Classification Using Logistic Regression,
SVM, and Neural Networks

Henrikas (Henry) Krukauskas
New York University Shanghai
New York, USA
henry.krukauskas@nyu.edu

Abstract

The Arabic Letter dataset (with 16,800
32x32 RGB images) was used in this re-
search project. The dataset was separated
into training set (13,440 images) and testing
set (3,360 images). Three machine learning
algorithms, namely Support Vector Machine
(SVM), Logistic Regression and Convolu-
tional Neural Network (CNN) were trained
on the data. Linear, radial basis function
(RBF) and sigmoid function kernel were
used when training the data with SVMs,
with the penalty parameter, C, of the er-
ror term varying over a range 0.0001 - 100.
While training our CNN, different values
of alpha (in ReLU) and activation functions
were used to find the most accurate model.
In addition, increase in the number of hid-
den layers resulted in very little change in
accuracy. As the result, the Convolutional
Neural Network (CNN) (with L2 reg. term
= 0.001 and 4 hidden layers) was found to
produce the best results with a classification
accuracy of 94.73 %, a slightly poorer accu-
racy of 75.83 % with a radial basis function
(RBF) (with C = 100), and the least accurate
was the Logistic Regression with accuracy
of 41.85%. Index Terms—Logistic, Neural
Networks, Convolution, SVM.

1 Introduction

The Arabic handwritten characters dataset was cho-
sen for this research project, which consists of
16,800 32x32 black-and-white images that were
obtained from 60 participants, age 19-40, and 90%
of participants are right-handed. Images are clas-
sified in 28 classes, where each class represents
an Arabic letter that the image with handwritten
data is capturing. Handwritten text recognition is
a typical machine learning algorithm problem for
classification.

The images were converted into data tables or
flattened vectors. Hence, various models (such as

Almadi Shiryayev
New York University Shanghai
New York, USA
asl2936@nyu.edu

logistic regression, SVM, NN, or CNN) can eas-
ily be trained on this dataset. The dataset has a
large amount of information, and applicability to
prototype different models provided incentive for
us to choose this type of data. Moreover, many
researchers and startups are concentrating on dig-
italizing many handwritten documents in order to
create more structured and usable data. Therefore,
handwritten Arabic letter recognition is an impor-
tant and valid question to look at, especially, if we
think about digitalization of documents that are
handwritten in Arabic.

For the purposes of this research, we choose
three machine learning algorithms that are the
Support Vector Machine (SVM), the Logistic Re-
gression, and the Convolutional Neural Network
(CNN). These algorithms are actively used in clas-
sification problems, thus, we decided to test our
data on these models. For comparison, we are go-
ing to look at the accuracy metric for each unique
model.

The dataset consists of training set (13,440 im-
ages) and testing set (3,360 images). However, we
decided to normalize data by dividing every value
by 255, so that the data would change to be values
in range from O to 1.

2 Classification Experiments

For the first set of classification experiments, the
SVM model was tested with different kernels and
regularization constants. We imported .csv files
that had already pre-flattened vectors. Thus, we de-
cided to use provided vectors for our SVM models.

2.1 SVM Kernels and Regularization

We used three types of kernels to train the data,
which are linear kernel, the radial basis function
(RBF) kernel and the sigmoid function kernel. For
the purposes of our research, we decided to use
training and testing sets provided in the dataset.
13,440 images were used to train the data. The



Kernel C Train Accuracy | Test Accuracy
Linear | 0.0001 22.54% 21.48%
0.001 33.83% 32.26%
0.01 52.55% 46.48%
0.1 67.95% 49.94%
1 85.04% 45.89%
10 96.14% 43.15%
100 98.99% 42.32%
RBF 0.0001 36.33% 33.03%
0.001 36.33% 33.03%
0.01 36.33% 33.03%
0.1 45.71% 40.92%
1 86.18% 65.29%
10 99.73% 72.23%
100 100% 72.53%
Sigmoid | 0.0001 24.71% 23.81%
0.001 24.71% 23.81%
0.01 24.76% 23.81%
0.1 35.27% 33.03%
1 34.76% 32.44%
10 26.57% 23.33%
100 25.79% 21.25%

Table 1: Test Accuracies for Different SVM Models

0.50
0.45 4 k

Accuracy
o o
w -
w (=
!

I

W

o
L

0.25 4

C

Figure 1: Accuracy against C for SVM Linear Kernel

accuracy was acquired from testing set, where we

adjusted our penalty parameter, C, for each run.

The penalty parameter, C, of the error term was
varied over the range from 0.0001 to 100. The
results are summarized in Table 1.

In Table 1, the best test accuracy of 72.53% was
obtained in RBF kernel for C = 100. The second
best test accuracy was obtained in Linear kernel
with value of 49.94%, with a penalty parameter C
= 0.1. The plot of accuracy against C for the linear
kernel is shown in Figure 1. The performance of
the SVM on the test set improves substantially until
C = 0.1, after which the performance diminishes.

The RBF kernel was tested next, with the penalty
parameter, C, ranging from 0.0001 to 100. In this
case, the best test accuracy of 72.53% was obtained
for C = 100. Asitis our last C value tested, we don’t

know if beyond C = 100 the accuracy values would
decrease. However, from the accuracy values that
we have, we can see that at C=10 and beyond, the
slope is converging to 0, which might mean that
beyond the C=100, the test accuracy might start
diminishing. The results are plotted in Figure 2.

Accuracy

C

Figure 2: Accuracy against C for SVM RBF Kernel

Thereafter, the Sigmoid kernel was tested, with
the penalty parameter, C, ranging from 0.0001 to
1000. In this case, the best test accuracy of 33.04%
was obtained for C = 0.1. After C = 0.1, test ac-
curacy started decreasing, which means that the
model is overfitting. The results are plotted in Fig-
ure 3.

0.32

0.30 1

Accuracy
o
N
©
)

o

N

o
L

0.24 4

0.22 4

C

Figure 3: Accuracy against C for SVM Sigmoid Kernel

Selected SVM Model The best results were ob-
tained with the RBF kernel SVM for C = 100 with
test accuracy of 72.53%. The confusion matrix of
the best result is shown in the Figure 4 below.



Accuracy Score: 0.725297619047619

Figure 4: Confusion Matrix of the Best Accuracy Model

2.2 Logistic Regression with Regularization
and Feature Transformation

For logistic regression, we used flattened vectors
from .csv files. The data was transformed with fea-
ture transformation of degree 2 and feature transfor-
mation of degree 3, that could be used for different
logistic regression model with feature transforma-
tions. Once again, we used preprocessed and split
data similarly as for SVM models. 13,440 images
were used to train the data. The accuracy was
acquired from testing set, where we adjusted our
penalty parameter, C, for each run. The penalty
parameter, C, of the error term was varied over the
range from 0.0001 to 100. The results are summa-
rized in Table 2.

Transform. C Train Accuracy | Test Accuracy
None 0.0001 28.96% 26.64%
0.001 34.64% 31.55%
0.01 44.85% 39.52%
0.1 53.94% 41.85%
1 60.19% 39.29%
10 61.41% 36.67%
100 61.29% 35.77%
Squared 0.0001 24.81% 25.92%
0.001 29.94% 29.58%
0.01 40.62% 36.10%
0.1 47.62% 38.36%
1 51.70% 35.86%
10 51.91% 34.29%
100 51.44% 33.33%
Cubed 0.0001 21.29% 25.71%
0.001 25.31% 28.75%
0.01 35.43% 33.96%
0.1 41.55% 36.13%
1 44.44% 34.50%
10 44.45% 33.18%
100 44.31% 32.32%

Table 2: Test Accuracies for Different LR Models

In Table 2, the best test accuracy of 41.85% was
obtained in no transformation model for C = 0.1.

From transformed data models, the best test accura-
cies were 38.36% for squared data transformation
with C = 0.1 and 36.13% for cubed data transfor-
mation with same C value.

The plot of accuracy against C for the no trans-
formation model is shown in Figure 5. The perfor-
mance of the logistic regression model on the test
set improves substantially until C = 0.1, after which
the performance diminishes.

034

Accuracy

032

0.30

028

026 T T T T

C

Figure 5: Accuracy against C for Simple LR Kernel

The plot of accuracy against C for the squared
transformation model is shown in Figure 6. The
performance of the logistic regression model on the
test set improves substantially until C = 0.1, after
which the performance diminishes.

C

Figure 6: Accuracy against C for Squared LR Kernel

The plot of accuracy against C for the cubed
transformation model is shown in Figure 7. The
performance of the logistic regression model on the
test set improves substantially until C= 0.1, after
which the performance diminishes.

Selected Logistic Regression Model The best re-
sults were obtained with the no data transformation
model for C = 0.1 with test accuracy of 41.85%.



036

034

032 {

Accuracy

028

026 1

C

Figure 7: Accuracy against C for Cubed LR Kernel

The confusion matrix of the best result is shown in
the Figure 8 below.

Figure 8: Confusion Matrix of the Best Accuracy Model

2.3 Neural Networks

Before training our CNN models, from our training
set, we split the data to create validation set to
produce more accurate results for our CNN models.
We used four types of activation functions in our
CNN to train the data such as Linear, Leaky ReLLU,
Sigmoid and Tanh. Each time we trained our model
5 times (5 epochs).

Each of the graph above shows the change in the
training and validation accuracy after each cycle
of training (after each epoch). Every activation
function, except for the sigmoid, showed accurate
results. The best results were obtained by using
Tanh activation function with a 91.63% of valida-
tion accuracy. Additionally, we analyzed how the
alpha term affects the model’s accuracy when using
Leaky ReLU activation function. The results are in
Table 4.

Each time we trained our model 5 times (5

Activation Epochs | Train Accuracy | Validation Accuracy
Linear 1 0.5392 0.7682
2 0.8324 0.8516
3 0.8943 0.8679
4 0.9259 0.8802
5 0.9449 0.8917
Leaky ReLU 1 0.4531 0.7050
2 0.7875 0.8170
3 0.8751 0.8624
4 0.9090 0.8943
5 0.9369 0.8906
Sigmoid 1 0.0353 0.0387
2 0.0350 0.0346
3 0.0354 0.0320
4 0.0354 0.0387
5 0.0338 0.0342
Tanh 1 0.5299 0.7816
2 0.8373 0.8631
3 0.9055 0.8962
4 0.9450 0.8999
5 0.9614 0.9163

Table 3: Validation Accuracies for Different CNN Mod-
els

Training and validation accuracy

0.95 7 @ Taining accuracy

pag { — Validation accuracy

085
L ]
080
075
070
0.65

060

0551 o

0.0 0.5 10 15 20 25 30 35 40

Figure 9: Accuracy Results for CNN with Linear Acti-
vation Function

Training and validation accuracy

@ Taining accuracy »
09 1 — validation accuracy

0.5 1

0.7

0.6 1

D5 1

T
00 05 10 LS 20 25 30 35 40

Figure 10: Accuracy Results for CNN with ReLU Acti-
vation Function

epochs). The best accuracy when using the Leaky



Training and validation accuracy

0.039

0.033

0.037

0.036 1

0.035 1

0.034

0.033 1

® Taining accuracy
= Validation accuracy

0.032 1

0.0 05 10 1 [ 20 =5 3.0 35 40

Figure 11: Accuracy Results for CNN with Sigmoid
Activation Function

Training and validation accuracy

@ Taining accuracy ® ®
— Validation accuracy
0.9 1
0.8
0.7
0.6 1
L]

0.0 05 10 15 20 25 30 5 4.0

Figure 12: Accuracy Results for CNN with Tanh Acti-
vation Function

Activation | Alpha Value | Val. Accuracy
Leaky ReLU 0.0001 0.8754
0.001 0.9044
0.1 0.9182
1 0.8969
10 0.7589
100 0.2556

Table 4: Validation Accuracies for Different Alpha Val-
ues

ReLU is obtained, when value of alpha is equal to
0.1. When alpha equals to 0.1, our model’s test
accuracy is 91.82%, which is a great result.

In addition, with each type of activation function,
we trained our models with L2 Regularization term.
The results are in Table 5.

The data in the Table 5 shows that using the
Tanh activation function with L2 regularization
term, which equals to 0.0001, gives us the high-
est validation accuracy.

Activation L2 Reg.term | Train Accuracy | Val. Accuracy
Linear 0.0001 0.9502 0.9010
0.001 0.9358 0.9077
0.1 0.7706 0.7719
1 0.5836 0.6124
10 0.3780 0.4010
100 0.0365 0.0342
Leaky ReLU 0.0001 0.9291 0.8873
0.001 0.9186 0.8761
0.1 0.7554 0.7474
1 0.5474 0.5796
10 0.0365 0.0290
100 0.0350 0.0290
Sigmoid 0.0001 0.0344 0.0298
0.001 0.0348 0.0387
0.1 0.0314 0.0417
1 0.0362 0.0357
10 0.0352 0.0379
100 0.0384 0.0335
Tanh 0.0001 0.9620 0.9263
0.001 0.9556 0.9193
0.1 0.7255 0.7124
1 0.5414 0.5815
10 0.0348 0.0320
100 0.0358 0.0298

Table 5: Validation Accuracies for Different L2 Values

# of Hidden Layers | Val. Accuracy
3 0.9312
4 0.9568
5 0.9554

Table 6: Validation Accuracies for Different # of Hidden

Layers

Table 6 shows the validation accuracy results of
the model with different amount of hidden layers.
The highest result was obtained when 4 hidden
layers were used in the model. Thus, in the next
model we are going to use 4 hidden layers to get
the most accurate result.

By analyzing the results of each of the analy-
sis we made, we decided to use Tanh activation
function with L2 regularization term 0.0001.

Next, to check accuracy of our model, we created
a confusion matrix (See Figure 13), which shows
that there are a lot of True Positive values, which
means that our model predicted almost everything
accurately.

Selected CNN Model After running the model,
the final accuracy is equal to around 0.947. In other
words, based on our validation set, our model will
be accurate and correct in 94.7% of all cases. How-
ever, the final testing accuracy after 20 cycles (20
epochs) of training our model is equal to 1.0. This
infers overfitting, which is why the overall accuracy
of the model is less than its testing accuracy.



Figure 13: Confusion Matrix of the Best Accuracy
Model

3 Conclusion

Out of the three machine learning algorithms used
to train our dataset, the best results produced for
each of the three algorithms were as follows: (i)
SVM - 72.53%, (ii) Logistic Regression - 41.8%
and (iii) and CNN - 94.7%. Several hyperparam-
eters were varied when training the dataset with
each of the three learning algorithms. Finally, the
CNN architecture with 4 fully convolutional layers
and L2 Reg. term = 0.001 was observed to pro-
duce the best results, with an accuracy of 94.7%.
Any further increase in the number of hidden layers
shows extremely small changes in final accuracy.
A slightly poorer accuracy of 75.83% with a radial
basis function (RBF) and C = 100, and the least
accurate was the Logistic Regression with its best
accuracy of 41.85%.

References

[1] https://towardsdatascience.com/logistic-regression-
using-python-sklearn-numpy-mnist-handwriting-
recognition-matplotlib-a6b31e2b166a

[2] https://www.datacamp.com/community/tutorials/understanding-
logistic-regression-python

[3] https://www.datacamp.com/community/tutorials/convolutional-
neural-networks-python



